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ABSTRACT 
Ontologies encode domain relationships in formally robust 
data structures that can be used to annotate scientific litera-
ture regarding human neuroimaging studies and results. The 
annotation process requires significant time and effort when 
performed by humans. Text mining algorithms can facilitate 
this process, but they render an analysis mainly based upon 
keyword, synonym and semantic matching. They do not lev-
erage information embedded in an ontology’s structure. We 
present a probabilistic framework that facilitates the automat-
ic annotation of literature by leveraging the dependencies 
between labels in different categories in the ontology. Our 
research focuses on annotating human functional neuroim-
aging literature using the Cognitive Paradigm Ontology. We 
use a hierarchical approach that combines the stochastic 
simplicity of naïve Bayes with the formal transparency of 
decision trees. Our data structure is easily modifiable to re-
flect changing domain knowledge. We compare our results 
to the baseline analysis returned by the National Center for 
Biomedical Ontology (NCBO) annotator. 

1 INTRODUCTION AND MOTIVATION 
Using ontologies to annotate scientific literature is an im-
portant knowledge management task in many scientific 
fields. Automating this process leads to reduction in human 
time and effort. We present an approach that goes beyond 
text mining, and demonstrate results on a specific ontology. 

1.1 BrainMap and CogPO 
BrainMap (www.brainmap.org) is one of the largest data-
bases of human neuroimaging results. The BrainMap soft-
ware suite provides toolsets needed to explore the different 
cognitive constructs underlying brain function in various 
disorders. In order to run large-scale meta-analyses a meth-
od to easily identify studies using the same (or similar) ex-
perimental methods and subjects is necessary.  
Although the value of the BrainMap project has been proven 
through facilitating numerous meta-analyses of fMRI stud-
ies, the number of publications in the literature far out-
weighs the number of publications that have been included 
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in the database. The task of annotating fMRI papers with 
experimental terms is traditionally performed with manual 
curation by human experts (Laird et al. 2005).  This current-
ly creates a bottleneck.  In this research we propose to assist 
or even replace the human with automated suggestions for 
classifying the PubMed paper. 

The BrainMap method for describing experiments has 
evolved into a taxonomy composed chiefly of structured 
keywords that categorize the experimental question ad-
dressed, the neuroimaging methods used, the behavioral 
conditions during imaging, and the statistical comparisons 
performed.. BrainMap forms the backbone of the Cognitive 
Paradigm Ontology (CogPO), which is incorporated as an 
ontology in the National Center for Biomedical Ontologies 
(NCBO) repository (Turner & Laird 2012). The standard-
ized annotations allow published experiments to be linked 
and identified for meta-analyses, despite the use of alternate 
vocabularies.  

1.2 Text Mining for annotation 
Text mining algorithms for annotation are needed for the 
problem of multi-label classification; the general case in 
which there are more than two labels to choose from, and 
each instance can have more than one label (Read et al. 
2011, Shi et. Al 2012).        

In previous work using a similar dataset, we evaluated a 
version of k-nearest-neighbor (kNN) in performing auto-
mated annotations (Chakrabarti et al. 2012). We found that 
the performance was comparable with results on other tex-
tual annotation datasets, but fairly poor for the multi-label 
aspects of the problem. Naïve Bayes is a probabilistic learn-
ing method, based on Bayes’ rule, which works surprisingly 
well on problems where its strong independence assumption 
is not met. Particularly it works well for supervised learning 
when the number of the instances in the training set is rela-
tively small, which is the situation here. It has been extend-
ed to the multi-label scenario using various transformation 
techniques (Dembczynski et al 2010). Therefore, we start 
with a naïve Bayes approach. 
     The naïve Bayes technique across all categories and pos-
sible labels does not leverage the correlations between la-
bels in different categories, which are implicitly encoded in 
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the domain ontology. Most text-mining techniques consider 
the labels to be anchors for clustering or topic modeling 
techniques, but have no way to use the fact that the terms 
may have implicit correlations to each other and object fea-
tures. The features used to derive terms in traditional text 
mining are most often a set of high entropy keywords (Sri-
vastava and Sahami 2009). We present a framework for the 
annotation task that makes use of the implicit information 
that is encoded in the ontology. 
    In many ontologies, there are often different categories 
from which a label may be drawn (Turner & Laird 2012). 
While naive Bayes is able to assign certain features in a 
training object to labels in a single category, it is unable to 
learn about correlations between labels and their associated 
features in different categories. Further, it is not possible for 
naive Bayes alone to increase or decrease its confidence in 
one label after it has been informed that some other label is 
a correct or incorrect annotation for the same object. Our 
method expands on naive Bayes by constricting training sets 
at each node in the tree to only those training objects perti-
nent to that node. This allows us to take advantage of any 
underlying correlations in the training set between labels of 
different categories, which would otherwise be hidden by 
building a separate classifier for each category.  

2 DATA SETS AND FORMAL FRAMEWORK 
Our data set consists of annotated abstracts from PubMed. 
We work on the abstracts and not the full papers because we 
want to interface our tool directly with the eUtils toolkit of 
PubMed that can fetch a set of text abstracts in batch mode.  

2.1 Multi-label text corpus  
Our corpus consists of 247 expertly annotated abstracts 
from fMRI and PET human neuroimaging papers, which are 
part of the BrainMap database. We consider annotations in 5 
distinct categories for each abstract – Stimulus Modality 
(SM), Stimulus Type (ST), Response Modality (RM), Re-
sponse Type (RT) and Instructions (I). Each of these catego-
ries comprises from 7 to over 40 allowable labels as de-
scribed in CogPO (Turner & Laird 2012).  Each abstract has 
been annotated by a human expert, and the label set for a 
single abstract includes at least one label from each of the 
SM, ST, RM, RT, or I categories, and possibly multiple 
labels from each.  
   The average number of labels per category per abstract 
ranged from 1.15 to 1.85 depending on the category. The 
CogPO ontology explicitly includes constraints on the la-
bels, e.g. a “Tone” as a Stimulus Type label entails that the 
Stimulus Modality must include “Auditory”, or the Instruc-
tion label “Smile” entails a Response Modality “Facial” 
label. The reader may notice that a flat text mining approach 
would be unable to make these distinctions, i.e., it would not 
be able to tell that label a changes the probability of label b 
in some other category. This multi-label, multi-class, multi-

category corpus serves as a gold standard against which we 
test our stochastic approach to literature annotation. 

2.2 Naïve Bayes 
 More formally, we define the set of abstracts, the feature 
vector (representing words from the corpus that are stems 
and not stop words), and the set of feature vectors as fol-
lows: 

𝐷 =    𝑑!|𝑑!   𝑖𝑠  𝑎𝑛  𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡  𝑖𝑛  𝑡ℎ𝑒  𝑐𝑜𝑟𝑝𝑢𝑠   

𝐹 =  < 𝑓!|𝑓!  𝑖𝑠  𝑎  𝑓𝑒𝑎𝑡𝑢𝑟𝑒  𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑖𝑛𝑔  𝑎  𝑤𝑜𝑟𝑑 >  

𝑉 =    𝑣!|𝑣! =  < 𝑏!!…   𝑏!" >, 𝑏!" =
1, 𝑐   ∈ 𝑎!
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

By definition, the length or size (| |) of 

𝑣! =    𝑓   𝑎𝑛𝑑   𝑉 = 𝐷 = 𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑠    

We can define CogPO as a set of categories 

𝐶 = 𝑆𝑀, 𝑆𝑇,𝑅𝑀,𝑅𝑇, 𝐼  

and each category using their individual labels. 

𝑆𝑀 =    𝑙!, 𝑙!,…   (other categories can be defined similarly) 

From the domain knowledge we know the following values 

𝑃 𝑀 𝑑! , 𝑙! |𝑏!" ,𝑃 𝑏!"|𝑀(𝑑! , 𝑙!) ,𝑃(𝑏!")  

where M(dx,l1) is an indicator function that is 1 if dx is la-
beled with l1, and 0 otherwise. 
 
We want to find the following value   

𝑃 𝑀 𝑑! 𝑙! ,𝑉!) =   
!(!(!!|!!)∪!!)

!(!!)
  

It follows from Bayes’ rule that 

𝑃 𝑀 𝑑! , 𝑙! |  𝑉!   ∝   𝑃 𝑀 𝑑! , 𝑙! 𝑃 𝑏!"   𝑀 𝑑! 𝑙!))
!

!!!
  

Similarly, we can calculate the probability for all the other 
labels in SM as well as ST, RM, RT, and I. We used binary 
relevance in a single category to solve the multi label classi-
fication problem (Read et al. 2011). Our method takes the 
raw probability calculated by the Bayesian classifier using 
the above equations for each label, and accepts all labels, 
which receive a probability greater than a pre-defined cutoff 
α.   

2.3 Bayesian Decision Trees 
Decision trees are discrete models that can predict the out-
put labels of samples in a data set, based on several input 
variables arranged in a tree-like structure with nodes and 
branches. Nodes in the tree represent a decision variable and 
the branches correspond to the next decision variable to be 
queried based on the outcome of the previous decision vari-
able. We use the Bayesian classifiers to make decisions 
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about which labels to include while traversing down the 
tree. 

Definition 1. BC,S is a Bayesian classifier trained on set 
S ⊆ D over category C .  

Definition 2. If S is a training set and s ∈ S then la-
bel(s) is the set of correct labels attached to item s. 

Definition 3. If t is a node in a tree T such that each 
node in T contains a label or an empty label, then lt∗ is a set 
that contains the label of node t and all of the labels of each 
ancestor of t, with no addition made if the label of a node is 
empty. In practice, the root is the only node that will have 
an empty label, since the training set is unlimited on the 
root node.  

Definition 4. T is a Bayesian Decision Tree if each 
node t of T consists of a category Ct which is not the same 
category as any of the ancestors of t, and which is shared 
among the siblings and cousins of t; a label lt which comes 
from the category of the parent of t and which is not shared 
with any of the siblings of t; and a multi-label Bayesian 
classifier BCt,St using definition 1. The training set St has the 
following restriction: ∀s ∈ St label(s) ⊆ lt∗. Finally, we 
require that the label of the root node is empty.  

Definition 5. If Bt is the Bayesian classifier associated 
with node t and I is an object which maybe categorized by 
Bt, then Bt(I) is the list of all labels which Bt returns upon 
classifying I. 

Definition 6. If l is a label and t is a node in a tree then 
Child(l, t) is the child of t which contains label l. 

Using these definitions, we construct a formal frame-
work for annotating the CogPO human neuroimaging ab-
stracts with labels from the CogPO ontology categories of 
SM, ST, RM, RT, and I.. We limit the training set on the 
naïve Bayes classifiers, in the tree, in order to leverage the 
dependencies between labels in different categories. By lim-
iting the training set on an internal node to only those ab-
stracts which have the labels of that node’s parents, we 
change the underlying probabilities of the Bayesian classifi-
er to better fit any dependencies between labels in different 
categories. This “less is more” approach helps the Bayesian 
classifier to focus on features, which are important to the 
current node in the tree. 

3 METHODOLOGY AND ALGORITHMS 
The NCBO Annotator, a component of the Bio-Portal, 
(http://bioportal.bioontology.org/annotator) is a Web service 
that annotates textual metadata with relevant ontology con-
cepts (Shah et al 2009). The NCBO Annotator consists of 
several standard annotations draws from many ontologies 
for its annotations, including CogPO. We use this to anno-
tate our corpus of abstracts as a baseline. The performance 
is measured using the F1-micro  score, based on precision 
and recall. In all our calculations, we set β = 1. (results are 
presented in Table 1).  

𝐹! =    1 + 𝛽!   
!"#$%&%'(  ∗  !"#$%%

!!  ∗  !"#$%&%'(  !  !"#$%%
 

 We first construct 5 separate naïve Bayes classifiers for 
each of the 5 categories as formalized in section 2.2. Each 
classifier is trained and tested on the entire corpus of ab-
stracts using 10-fold cross-validation, and their f1-micro 
scores are calculated. Abstracts in the testing set are anno-
tated with a label if the label had a probability score greater 
than α = 0.1. 
        Next we construct the Bayesian Decision Trees (BDTs) 
as formalized in section 2.3.. Given that we have 5 catego-
ries, we build all 120 possible BDTs. We annotate the cor-
pus of abstracts using the BDTs, with the criterion that if the 
probability of a label is greater than 0.1 for some abstract, 
then that abstract is tagged with that label. Then we aggre-
gate the labels across each of the 5 categories and calculate 
a mean f-score for each category to determine the quality of 
the annotations for each instance of the category across the 
120 trees.  
      Finally, we consider the case when a human annotator is 
using our algorithm to quickly annotate abstracts. In practice 
an expert sometimes can accurately guess the label for at 
least one of the categories just with a quick glance at an 
abstract (e.g., the abstract states explicitly that the experi-
ment used picture of faces as the stimulus, or that subjects 
pushed a button with their foot to respond). To model this, 
we trained our BDTs with the condition that the root node 
has already been decided. We call this the Constrained De-
cision Tree (CDT). As a result we have trees rooted at SM, 
ST, RM, RT, and I, corresponding to the cases where the 
human expert assigns the label for that category. The rest of 
the tree is constructed exactly as before except that, when 
the mean f-score is calculated for each category across all 
possible CDTs, we remove the instances where the f1-micro 
score is 1.0. These instances correspond to the annotations 
assigned by the expert, and we do not want them to influ-
ence the quality of the results returned by our algorithm. 
 
 
Input: Un-Labeled Item I, Bayesian Decision Tree T 
Output: Label Vector in Multiple Categories L 
t = Root(T) 
SearchList = NULL  
while do t ̸= NULL 
         L = L : Bt(I)  
         for l ∈ Bt(I) do 
                   SearchList = SearchList : Child(l, t) 
         end for 
         t = SearchList[0] 
        x : SearchList = SearchList  
end while 
return L 

Algorithm 1: Generalization of Bayesian Decision Trees 
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Table 1: F1-micro results of the NCBO Annotator recreating the correct 
annotations for the fMRI abstracts. 

4 RESULTS AND DISCUSSION 
We observe from Table 1 that annotations returned by the 
NCBO annotator leave a huge scope for improvement. Giv-
en the paucity of synonyms listed in CogPO, correct results 
occurred only when the annotation term occurred itself in 
the abstract text. 
      The quality of the results for the naïve Bayes (NB), 
Bayesian Decision Trees (BDT), and Conditional Decision 
Trees (CDT) are shown in figure 1. The error bars shown 
are twice the standard deviation on both directions of the 
mean of the f1-micro score for each category. All the meth-
ods show a significant improvement over the NCBO results. 
The f1-micro scores for Stimulus Type (ST) and Instruc-
tions (I) are lower than in the other categories because of the 
large number of labels they incorporate, leading to lower  

Figure 1: Comparison of Naïve Bayes, Bayesian Decision Tree, 
and Constrained Decision Tree, by CogPO category. The error bars 
are twice the standard deviation.  
 
sample size for each label. Stimulus Modality (SM), Re-
sponse Modality (RM), and Response Type (RT) have few-
er labels and thus better performance.  For every category, 
the Bayesian Decision Tree f1-micro score is slightly lower 
than that of the naïve Bayes. This is due to fact that our 
sample size constriction for the training sets at each level of 
the decision tree decreases precision and recall for labels 
lower down in the tree and any increases due to underlying 
correlations are not sufficient to make up for this decrease. 
The Constrained Decision Tree always has a higher f1-
micro score than the other 2 methods because the guarantee 

of correct labels in the first category of each tree is lever-
aged through the cascading correlations among labels in 
different categories further down the tree and labels in the 
root node’s category. 

5 CONCLUSIONS AND FUTURE WORK 
We have demonstrated a formally rigorous stochastic 
framework for annotating BrainMap literature using the 
Cognitive Paradigm Ontology. Unlike text mining algo-
rithms, our framework references the knowledge encoded 
by the dependencies in the ontology. The framework can be 
easily modified and updated to reflect changes in domain 
knowledge.  
     Our results from naïve Bayes analysis significantly im-
prove upon the baseline analysis of the NCBO annotator. 
The constrained decision tree architecture improves upon 
the naïve Bayes results. When we fix the first node of the 
decision tree, there is a significant improvement in the anno-
tation accuracy. This is a useful tool for aiding a human 
expert in annotation because the expert can accurately select 
one annotation from several categories with a quick skim of 
an abstract. Our technique can then annotate the remaining 
categories with high accuracy. Although this approach does 
not eliminate the human expert from the loop, it comple-
ments their decision-making and significantly reduces the 
time and effort for the annotation task. 
    We next plan to apply our techniques to different ontolo-
gies with more complex structures. We believe the modular 
nature of our framework will scale well to these new ontol-
ogies. We also want to algorithmically learn gaps (missing 
labels) in the ontology through literature matching analysis. 
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 SM ST RM RT I 
F-score 0.0000 0.0094 0.0000 0.0023 0.0043 


